直观:常用的大数据采集工具有哪些?

优采云 发布时间: 2022-10-13 04:15

  直观:常用的大数据采集工具有哪些?

  大家好,我是秋秋~

  众所周知,大数据的来源多种多样。在大数据时代背景下,如何从大数据中获取有用信息是大数据发展的最关键因素。大数据采集是大数据产业的基石,大数据采集阶段的工作是大数据的核心技术之一。为了高效地采集大数据,关键是要根据采集环境和数据类型选择合适的大数据采集方法和平台。下面介绍一些常用的大数据采集平台和工具。

  1. 水槽

  Flume 作为 Hadoop 的一个组件,是 Cloudera 专门开发的分布式日志采集系统。尤其是近年来,随着 Flume 的不断完善,用户在开发过程中的便利性有了很大的提升,Flume 现已成为 Apache Top 项目之一。

  Flume提供了从Console(控制台)、RPC(Thrift-RPC)、Text(文件)、Tail(UNIX Tail)、Syslog、Exec(命令执行)等数据源采集数据的能力。

  Flume 采用了多 Master 的方式。为了保证配置数据的一致性,Flume 引入了 ZooKeeper 来保存配置数据。ZooKeeper 本身保证了配置数据的一致性和高可用性。此外,ZooKeeper 可以在配置数据发生变化时通知 Flume Master 节点。Gossip 协议用于在 Flume Master 节点之间同步数据。

  Flume对于特殊场景也有很好的自定义扩展能力,所以Flume适用于大部分日常数据采集的场景。因为 Flume 是用 JRuby 构建的,所以它依赖于 Java 运行时环境。Flume 被设计成一种分布式管道架构,可以看作是数据源和目的地之间的代理网络,以支持数据路由。

  Flume 支持设置 Sink 的 Failover 和负载均衡,以保证在一个 Agent 故障时整个系统仍然可以正常采集数据。Flume中传输的内容被定义为一个事件,一个事件由Headers(包括元数据,即Meta Data)和Payload组成。

  Flume 提供 SDK,可以支持用户定制开发。Flume 客户端负责将事件发送到事件源的 Flume 代理。客户端通常与生成数据源的应用程序位于同一进程空间中。常见的 Flume 客户端是 Avro、Log4J、Syslog 和 HTTP Post。

  2.流利

  Fluentd 是另一种开源数据采集架构,如图 1 所示。Fluentd 是用 C/Ruby 开发的,使用 JSON 文件来统一日志数据。通过丰富的插件,您可以采集各种系统或应用程序的日志,然后根据用户定义对日志进行分类。使用 Fluentd,跟踪日志文件、过滤它们并将它们转储到 MongoDB 等操作非常容易。Fluentd 可以将人们从繁琐的日志处理中彻底解放出来。

  图 1 Fluentd 架构

  Fluentd 具有多种特性:易于安装、占用空间小、半结构化数据记录、灵活的插件机制、可靠的缓冲和日志转发。Treasure Data 为本产品提供支持和维护。此外,使用 JSON 统一的数据/日志格式是它的另一个特点。与 Flume 相比,Fluentd 的配置相对简单。

  Fluentd 的扩展性很强,客户可以自己定制(Ruby)Input/Buffer/Output。Fluentd 存在跨平台问题,不支持 Windows 平台。

  Fluentd 的 Input/Buffer/Output 与 Flume 的 Source/Channel/Sink 非常相似。Fluentd 架构如图 2 所示。

  图 2 Fluentd 架构

  3.Logstash

  Logstash 是著名的开源数据栈 ELK(ElasticSearch、Logstash、Kibana)中的 L。因为 Logstash 是用 JRuby 开发的,所以运行时依赖于 JVM。Logstash的部署架构如图3所示。当然,这只是一个部署选项。

  图3 Logstash的部署架构

  一个典型的 Logstash 配置如下,包括 Input 和 Filter 的 Output 的设置。

  input {<br > file {<br > type =>"Apache-access"<br > path =>"/var/log/Apache2/other\_vhosts\_access.log"<br > } <br > file {<br > type =>"pache-error"<br > path =>"/var/log/Apache2/error.log"<br > }<br >}<br >filter {<br > grok {<br > match => {"message"=>"%(COMBINEDApacheLOG)"}<br > } <br > date {<br > match => {"timestamp"=>"dd/MMM/yyyy:HH:mm:ss Z"}<br > }<br >}<br >output  {<br > stdout {}<br > Redis {<br > host=>"192.168.1.289"<br > data\_type => "list"<br > key => "Logstash"<br > }<br >}<br >

  几乎在大多数情况下,ELK 同时用作堆栈。在您的数据系统使用 ElasticSearch 的情况下,Logstash 是首选。

  4.楚夸

  Chukwa 是 Apache 旗下的另一个开源数据采集平台,知名度远不如其他平台。Chukwa 建立在 Hadoop 的 HDFS 和 MapReduce(用 Java 实现)之上,以提供可扩展性和可靠性。它提供了许多模块来支持 Hadoop 集群日志分析。Chukwa 还提供数据展示、分析和监控。该项目目前处于非活动状态。

  Chukwa 满足以下需求:

  

  (1) 灵活、动态、可控的数据源。

  (2) 高性能、高扩展性的存储系统。

  (3) 用于分析采集的*敏*感*词*数据的适当架构。

  Chukwa 架构如图 4 所示。

  图 4 Chukwa 架构

  5. 抄写员

  Scribe 是 Facebook 开发的数据(日志)采集系统。其官网多年未维护。Scribe 为日志的“分布式采集、统一处理”提供了可扩展和容错的解决方案。当中央存储系统的网络或机器出现故障时,Scribe 会将日志转储到本地或其他位置;当中央存储系统恢复时,Scribe 会将转储的日志重新传输到中央存储系统。Scribe 通常与 Hadoop 结合使用,将日志推送(push)到 HDFS 中,由 MapReduce 作业定期处理。

  Scribe 架构如图 5 所示。

  图 5 Scribe 架构

  Scribe 架构比较简单,主要包括三个部分,即 Scribe 代理、Scribe 和存储系统。

  6. Splunk

  在商用大数据平台产品中,Splunk提供完整的数据采集、数据存储、数据分析处理、数据呈现能力。Splunk 是一个分布式机器数据平台,具有三个主要角色。Splunk 架构如图 6 所示。

  图片

  图 6 Splunk 架构

  搜索:负责数据的搜索和处理,在搜索过程中提供信息提取功能。

  Indexer:负责数据的存储和索引。

  Forwarder:负责数据的采集、清洗、变形、发送到Indexer。

  Splunk 内置了对 Syslog、TCP/UDP 和 Spooling 的支持。同时,用户可以通过开发 Input 和 Modular Input 来获取特定的数据。Splunk提供的软件仓库中有很多成熟的数据采集应用,比如AWS、数据库(DBConnect)等,可以很方便的从云端或者数据库中获取数据,输入到Splunk的数据平台进行分析.

  Search Head和Indexer都支持Cluster配置,即高可用和高扩展,但是Splunk还没有Forwarder的Cluster功能。也就是说,如果一台Forwarder机器出现故障,数据采集将中断,正在运行的数据采集任务无法故障转移到其他Forwarder。

  7.刮擦

  Python 的爬虫架构称为 Scrapy。Scrapy 是一个使用 Python 语言开发的快速、高级的屏幕抓取和网页抓取框架,用于抓取网站并从页面中提取结构化数据。Scrapy 用途广泛,可用于数据挖掘、监控和自动化测试。

  Scrapy 的吸引力在于它是一种任何人都可以根据需要轻松修改的架构。它还为各种类型的爬虫提供了基类,例如BaseSpider、Sitemap爬虫等。最新版本提供了对Web 2.0爬虫的支持。

  Scrapy的工作原理如图7所示。

  图片

  图 7 Scrapy 运行原理

  

  Scrapy 的整个数据处理流程由 Scrapy 引擎控制。Scrapy运行过程如下:

  (1) Scrapy引擎打开域名时,爬虫对域名进行处理,让爬虫获取第一个爬取的URL。

  (2) Scrapy引擎首先从爬虫中获取第一个需要爬取的URL,然后在调度中将其作为请求进行调度。

  (3) Scrapy引擎从调度器中获取要爬取的下一页。

  (4)调度器将下一次抓取的URL返回给引擎,引擎通过下载中间件将其发送给下载器。

  (5)下载器下载网页后,通过下载器中间件将响应内容发送给Scrapy引擎。

  (6) Scrapy引擎接收到下载器的响应,通过爬虫中间件发送给爬虫进行处理。

  (7)爬虫处理响应并返回爬取的物品,然后向Scrapy引擎发送新的请求。

  (8) Scrapy引擎将抓取到的项目放入项目流水线,向调度器发送请求。

  (9)系统重复步骤(2)之后的操作,直到调度器中没有请求,然后断开Scrapy引擎与域的连接。

  过去推荐

  国企为何要加快数字化转型?

  8000字详细讲解数据建模的方法、模型、规范和工具!

  7 个常见的数据治理错误

  一名前百度员工因在内网发布“女演员名单”而被解雇。

  20000字,详细讲解数据湖,概念、特点、架构、解决方案、场景及建湖全过程(推荐采集)

  看起来满是bug的排序代码其实是正确的

  肝爆一年后,18w 字的 Flink SQL 成为大作,横空出世!!!(推荐采集)

  6500字,详细的数据中心!

  4D长文:数字化工厂详细解决方案

  数据治理:治理数字VS培育数字,哪个是最好的棋?

  数据中心底层架构逻辑详解(推荐采集)

  3D“冰盾盾”代码开源!快来一起玩吧!!

  欢迎大家加我的个人微信

  关于大数据和企业遇到的问题,我们群里一起讨论

  长按顶部扫二维码,加我微信笔记加群,拉你进群

  ‍

  解决方案:数据采集api(数据采集app毕设)

  本篇文章将为大家讲述data采集api以及data采集app补全对应的知识点。我希望它对你有帮助。不要忘记为这个网站添加书签。

  本文内容列表:

  Internet采集数据的常用方法有哪些?

  通过日志获取的数据通常是服务器或工程。这种类型的数据通常是由人造数据协议制成的。连接很简单,然后结构化日志数据来分析或监控一些工程项目。通过 JS 跟踪代码,就像 GA 和百度统计一样,属于这一类。网页末尾放了一段JS。当用户打开并浏览网页时,会被触发。他会根据这些数据将浏览器的一些信息发送到服务器进行分析。,帮助网站操作,APP优化。通过API,像一些天气接口,国内有很多这方面的平台,聚合就是其中之一,上面有很多接口。这类数据一般是实时的、更新的数据,通过爬虫按需付费,比如百度蜘蛛,或者和我们类似的优采云采集器,只要是网上公开的数据采集,这类产品有好几种,各有特点针对不同的人群。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。或者和我们类似的优采云采集器,只要是网上公开的数据采集,这种类型的产品有好几种,针对不同的人群,各有特点人们。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。或者和我们类似的优采云采集器,只要是网上公开的数据采集,这种类型的产品有好几种,针对不同的人群,各有特点人们。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。只要是网上公开的数据采集,这类产品有好几种,各有特色,适合不同的人群。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。只要是网上公开的数据采集,这种类型的产品有好几种,每一种都有自己的特点,适合不同的人群。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。每个人都有自己的特点,适合不同的人群。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。每个人都有自己的特点,适合不同的人群。至于那些能做到智能的,一般来说,只有我们的智能算法才能做得更好一点。(兴趣相关)比如自动帮你识别网页上的元素,自动帮你提速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。自动帮你识别网页上的元素,自动帮你加速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。自动帮你识别网页上的元素,自动帮你加速等等。埋点其实和JS很像。一般是指APP,如申策、GROWINGIO等,其原理是在APP中嵌套一个SDK。如果您需要了解更多关于某个项目 采集 的信息,我们来谈谈它。说白了就是通过前端或者自动化技术来采集数据。

  

  如何理解数据采集卡片api接口

  这类技术问题,我一般去相关公司的官网问技术顾问(深邦汇控科技*敏*感*词*),我找到的答案太模棱两可了,最好有直接的对话。

  什么是 api采集 站

  API(Application Programming Interface)的英文全称。

  1、对这个定义的理解需要追溯到操作系统的发展史。当WINDOWS操作系统开始占据主导地位时,在WINDOWS平台下开发应用程序成为人们的需求。在WINDOWS编程领域发展初期,WINDOWS程序员可以使用的编程工具只有API函数。这些函数是WINDOWS为应用程序和操作系统提供的接口。多种应用,界面丰富,功能灵活。因此,可以认为API函数是整个WINDOWS框架的基石。下面是WINDOWS的操作系统核心,上面是华丽的WINDOWS应用。

  

  2、当时的WINDOWS程序开发还是比较复杂的工作。程序员要记住很多常用的API函数,还要对WINDOWS操作系统有深入的了解。但是,随着软件技术的不断发展,WINDOWS平台上出现了很多优秀的可视化编程环境,程序员可以使用“所见即所得”的编程方式来开发用户界面美观、功能强大的应用程序。

  3、可视化编程环境操作简单,界面友好(如VB、VC++、DELPHI等),并在这些工具中提供了大量的类库和各种控件,替代了神秘的功能API。其实这些类库和控件都是基于WIN32 API函数的,是封装的API函数的集合。它们将常用的 API 函数组合成一个控件或类库,并赋予它们方便的使用方法,从而大大加快了开发 WINDOWS 应用程序的过程。有了这些控件和类库,程序员就可以专注于程序整体功能的设计,而不必过多关注技术细节。

  4、其实如果要开发更灵活、实用、高效的应用程序,必须直接使用API​​函数。尽管类库和控件使应用程序开发更加简单,但它们只提供 WINDOWS。通用功能,对于比较复杂和特殊的功能,使用类库和控件是非常困难的,需要使用API​​函数来实现。

  5.这也是API函数用到的地方,所以我们不必为API函数研究每个函数的用法,这是不现实的(可以使用的API函数有数千个)。不学API,需要的时候去看看API帮助就够了。

  这里说一下data采集api的介绍。感谢您花时间阅读本网站的内容。有关 data采集app 和 data采集api 的更多信息,请不要忘记访问 Find it on this site。

0 个评论

要回复文章请先登录注册


官方客服QQ群

微信人工客服

QQ人工客服


线