python网页数据抓取(Python数据抓取分析-本文本文的全部内容)
优采云 发布时间: 2021-12-21 00:27python网页数据抓取(Python数据抓取分析-本文本文的全部内容)
本文介绍Python数据采集与分析,分享给大家,如下:
编程模块:requests、lxml、pymongo、time、BeautifulSoup
首先获取所有产品的类别 URL:
def step():
try:
headers = {
。。。。。
}
r = requests.get(url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
url = soup.find_all(正则表达式)
for i in url:
url2 = i.find_all('a')
for j in url2:
step1url =url + j['href']
print step1url
step2(step1url)
except Exception,e:
print e
我们在对产品进行分类时,需要判断我们访问的地址是一个产品还是另一个分类的产品地址(所以我们需要判断我们访问的地址是否收录if判断标志):
def step2(step1url):
try:
headers = {
。。。。
}
r = requests.get(step1url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
a = soup.find('div',id='divTbl')
if a:
url = soup.find_all('td',class_='S-ITabs')
for i in url:
classifyurl = i.find_all('a')
for j in classifyurl:
step2url = url + j['href']
#print step2url
step3(step2url)
else:
postdata(step1url)
当我们的if判断为true时,我们将获取第二页的类别URL(第一步),否则我们将执行postdata函数来抓取网页的产品地址!
def producturl(url):
try:
p1url = doc.xpath(正则表达式)
for i in xrange(1,len(p1url) + 1):
p2url = doc.xpath(正则表达式)
if len(p2url) > 0:
producturl = url + p2url[0].get('href')
count = db[table].find({'url':producturl}).count()
if count 1:
td = i.find_all('td')
key=td[0].get_text().strip().replace(',','')
val=td[1].get_text().replace(u'\u20ac','').strip()
if key and val:
cost[key] = val
if cost:
dt['cost'] = cost
dt['currency'] = 'EUR'
#quantity
d = soup.find("input",id="ItemQuantity")
if d:
dt['quantity'] = d['value']
#specs
e = soup.find("div",class_="row parameter-container")
if e:
key1 = []
val1= []
for k in e.find_all('dt'):
key = k.get_text().strip().strip('.')
if key:
key1.append(key)
for i in e.find_all('dd'):
val = i.get_text().strip()
if val:
val1.append(val)
specs = dict(zip(key1,val1))
if specs:
dt['specs'] = specs
print dt
if dt:
db[table].update({'sn':sn},{'$set':dt})
print str(sn) + ' insert successfully'
time.sleep(3)
else:
error(str(sn) + '\t' + url)
except Exception,e:
error(str(sn) + '\t' + url)
print "Don't data!"
最后运行所有程序,对数值数据进行分析处理并存入数据库!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持面圈教程。